Mastervolt蓄电池内部电解液所含有的活性物质,其浓度损失百分比可以表示为:
式中:C*为初始浓度;C(t)为电解液中t时刻活性物质的浓度;时间t的取值范围[0,L],L为放电总时间。
当使用蓄电池一维的电化学模型,根据电化动力学理论,最终可以得到电解液活性物质浓度损失百分比函数:
式中:v为反应中电子的数目;F为法拉利常数;A为电极的面积;D为扩散系数。
由于电解液的活性物质浓度和电池的SOC成正比的关系,设比例系数为M,可以直接得出电池t时刻的SOC解析表达式:
若考虑电流值为I的恒流放电过程,放电截止时ρ(L)1,则可以得到以下等式:
对于给定的恒流放电集合{I*,*=1,2,…,n},可以使用最小二乘法得到最优的α、β参数,其中:
得到模型参数之后,为方便模型的实际应用,使用积分的矩形近似方法改写(4)式,用以获得离散时间上的近似递推模型,在间隔周期△t足够小的情况下,递推模型可以写为:
首先将(7)式作为蓄电池SOC估算系统的状态方程,蓄电池SOC为状态量,蓄电池的工作电流作为系统的输入。然后,利用Mastervolt蓄电池的工作电压构造系统的观测方程。
Mastervolt蓄电池负载电压与当前时刻蓄电池的开路电压(Vcc)之间的关系是:
式中:R为蓄电池内阻。又由于Vcc和内阻都与其SOC有着直接的关系,故可以使用关于sk的函数,得到卡尔曼滤波算法中的观测方程:
式中:uk表示k时刻的电池端电压,则(7)式和(9)式组成了蓄电池SOC估算的卡尔曼滤波系统。确定(9)式的具体过程将在实验部分详细分析。
使用基于电化学理论的电化学安时模型,实现对蓄电池SOC的在线估算,并针对电化学安时模型开环估算的特性,构造卡尔曼滤波器算法的闭环系统,以减小测量偏差对估算精度的影响。实验表明:
(1)基于电化学理论的蓄电池动态模型可以用于有效的蓄电池实时SOC估算。
(2)将闭环反馈计算引人开环的安时估算中,对原开环估算精度没有影响,且可以有效地修正由测量偏差引起的估算误差。
(3)通过涓流放电和大电流间歇放电获取试验数据和多项式近似的方式得到观测方程,可以有效地应用于卡尔曼滤波器闭环反馈计算。
联系人:余工
手 机:198-5307-5821
邮 箱:batteryltd@sina.com